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We show that effective interactions mediated by disorder between two directed polymers can be modeled as
the cross-correlation of noises in the Kardar-Parisi-Zhéfg§Z) equations satisfied by the respective free
energies of these polymers. When there are two polymers, disorder introduces attractive interactions between
them. We analyze the phase diagram in detail and show that these interactions lead to new phases in the phase
diagram. We show that, even in dimensidr 1, the two directed polymers see the attraction only if the
strength of the disorder potential exceeds a threshold value. We extend our calculations to show that if there are
m polymers in the system, them-body interactions are generated in the disorder averaged effective free
energy.

PACS numbgs): 64.60.Ak, 05.40-a, 75.10.Nr, 36.20-r

I. INTRODUCTION (V(k,H)V(k',t")y=2D&%k+k")8(t—t"). 2)

A. Background
The elastic termy(dx/d7)? attempts to smoothen out the DP

inimum v(dx/d7)? everywherg while the disorder poten-

al favors the DP to take a rough profile so that the DP can
r&o through the low energy paths. At a low enough tempera-
ture the second option is energetically favorable and a
disorder-dominated super diffusive phase is produced
2,5,6,10,11 At d>2 a transition is observed from low tem-
erature strong disorder phase to high temperature smooth
ghase[S,lZ,la, which is described by an unstable fixed

Studies of phase transitions in presence of disorder ha
opened up new problems in statistical mechanics. Phase tr
sitions in spin glasses and polymers in disordered media a
typical example$1-5]. Various attempts have been made to
understand such transitions see, e.g., RéF]. In Ref.[6]
replica trick has been used while in Ref§,7,9 dynamic
renormalization group has been used and the relevant exp
nents(see Sec. )lhave been calculated. The nature of over-

laps, if there is more than one polymer in the system, ha oint toO(€) in a dynamic RG calculatioft,10]. There is a
also been exam'”eﬂ”- Howgver, Whether directed poly- one-to-one mapping between the problem of a directed poly-
mers (DP) can interact via disorder in the absence of @Y mer in a random medium and the nonequilibrium surface
i . . egrowth problem described by the Burgers/Kardar-Parisi-
3.Sk' If therteh are rtnorett?rz]in onr? dDPsdln the dt;sordere(i meZhang(KPZ) equation. The Burgers equation is the simplest
Ium, can they nteract through disorder In abSence o any,,,inaay generalization of the diffusion equatidd]. This
direct mutual interaction? We find that in the absence of améquation is used to describe diverse phenomena: structure
direct interactions, disorder mediates effective attractive inTormation in astrophysical situations, turbulence étc This

teractions between the DPs that lead to binding transitions, | e mapped into the Kardar-Parisi-Zh&K§Z) equation

between them, which are qualitatively similar[fd. hich is a prototvpe model for nonequilibrium arowth sur-
A directed polymer ind+ 1 dimensions is just a directed gcles 'S 8 protolyp quitibrium growth su

string stretched along one particular direction with free fluc-
tuations in all othed transverse directions. The Hamiltonian

of a directed polymer in a quenched random potential is %Jr %(Vh)Zz »V2h+ 7. (3)
H t [v/dx\2 X\
keT f A731 57 T VXD, (1) The Gaussian noise satisfies

(n(x) (X' ,t')) =D& x=x")8(t—t"). 4)
wherex(t) is thed-dimensional transverse spatial coordinate
of the directed polymer at length The first term is the The long wavelength and long time properties of this equa-
energy due to transverse fluctuatiqetastic energyand the  tion have been studied extensively using dynamic renormal-
second one is the potential energy due to disorder. In a rarization group methog1].
dom environment there is a competition between the poten- Interestingly, this equation can be transformed into a lin-
tial energy due to randomness and the elastic energy. THear equation by Cole-Hopf transformatiphi:
random potentiaV/ is chosen to be Gaussian-distributed, zero
mean with a correlation given by h(x,t)=(2v/\)InW=KgT InW. (5)

The resultant linear equation is a diffusion equation with a
*Email address:abhik@physics.iisc.ernet.in multiplicative noise:
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IW ) ” In two paperg7], Mukherjee and Bhattacharjee have studied
e vVW+ Z_VW' (6)  overlap of directed polymers in a random medi(see also

[8] for a related problem on a latticeThey calculated the
overlap of polymers by introducing new interactions in the

The partition functionZ of a directed polymer satisfies the Hamiltonian(8) and calculated the scaling behavior using a

above equation withbeing the coordinate parametrizing the dynamic renormalization group approach. Their modified

length of the polymer. It immediately follows that the free Hamiltonian is given by 7]

energy of the DPh=kgT In Z satisfies the KPZ E(q3). The

corresponding Hamiltonian is the Hamiltonian of a directed m ¢ M1

polymer as given in Eq(1). The relation between the surface Hn=>, Hi+(>\/27)vmf dr[] o(xi+a(DD, (9

growth problem described by the KPZ equation and the di- =1 o 1=t

rected polymer problem described by the Hamiltonianis . N ,

as follows: The temperature scale of the polymer has been€re Hi is the Hamiltonian(1) for the ith polymer and

set to one: hence the elastic modulus of the polymer is giveffii+1=% ~Xi+1. The presence of the additionaifunctions

by c=1/2v, and the height variable of the KPZ equation interactions ensure that the Qver!ap betwé&epolymers is

gives the free energy of the polymer problem. The probabil’onZzero. HereH, is the Hamiltonian(9). However, due to

ity distribution of the quench random potentisl(x,t) is the additional terms in the_lr Ha_rm_ltoman representing the

same as that of the noiséx,t) in the KPZ Eq.(3). The overlap, the equa_\tlon that_ is satisfied by the corr_espo_ndlng

relevant exponents arg and {=1/z. y describes the free total free energy is not quite the usual KPZ equation; it has

energy fluctuation$~tX'? () is also the roughness exponent an additional term as noise:
of the height fieldh. zis given by([x(t) —x(0)]?)~t?* and

m
is also the dynamic exponent of Due to the Galilean in- ﬂ_ 2 ﬁ 2
variance of the KPZ equation there is an exact exponent at ‘121 yViht Z(V'h) 9. (10
relation
where
X+ Z:2 (7) m m—1
Jo= Zl [YV(X]' ’t)+va1 5(Xj,j+1(7')) . (11
B. Results .

In this paper, we investigate when there are two DPs in @ue to this unusual looking noise term, although ELD)
random medium whether the medium can induce interactionkoks like a higher fnd) dimensional KPZ equation, it is not
leading to phase transitions in absence of any direct mutuakally so. With this modified Hamiltonian/KPZ equation the
interactions between the polymers. We find that disorder inerossover exponentis,, for overlap ofm chains forv,,—0
deed induces effective attractive interactions between thhave been calculated in RdfZ]. We, however, do not in-
polymers that causes phase transitions in the system. lelude additional interactions and work with the Hamiltonian
terms of the KPZ descriptions, this implies that noises in thg8).
individual KPZ equations satisfied by the free energies of the
respective polymers have nonzero cross-correlations. In Sec.
II, we show that if there are two polymers in the system, then
cross-correlations of the random potentials seen by them Let us again consider the Hamiltonian for two DPs in a
may lead to a binding-unbinding transition of them. We ana-disordered medium:
lyze the phase diagram and show that new phases appear, ¢ Tpldc)2 \
which do not exist when there is only one polymer in the _ _ i
medium. We calculate the crossoveryexpor(Ziuﬁned be- H_H1+H2_i;,2 fo T 2( dT) " 2VV(Xi(T)'T)
low). In Sec. lll, we generalize our calculations and show (12
that effectivem-polymer interactions are also generated. We
summarize our results in Sec. IV. whereH; and H, are the Hamiltonians for the two DPs,

respectively x; andx, are their transverse fluctuations. We
Il. TWO DIRECTED POLYMERS IN A RANDOM MEDIUM take the total Hamiltonian to be additiyee., a sum ofH;
andH,) as there are no direct mutual interactions between
the polymersV;=V(x;) and V,=V(x,) are the potential
energies. The total partition functichis the product of the

In absence of any direct interactions, the Hamiltonian ofindividual partition functions:
two DPs in a random medium becomes just the sum of the

B. Effective interactions between two directed polymers:
The phase diagram

A. Model

individual HamiltoniansH; andH: Z=27,Z,=[Dx, Dx,exfd — B(H{+H>)].
v dx\? v(dxy\? z ;
H=H+H; fo 2( dt) +2( dt
9Z, 5
_:VV Zl+21V1, (13)

+Vl(xlit)+v2(x2!t)} (8) ot
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0Z B
ﬁ—tz = WV2Z,+ Z Vs, (14) AN
.
while the free energiesh; and h, satisfy [as Z;, ',
=exp(=Bhy )] :
M2 Why2+v2h 1 15 ’
i~ 2 (Vh) ™+ Vohy +1y, (19 .
L J
)
M X (Thy)2+ 2yt 1 16 .
i~ 2(Vha) 2t 1o, (16) !
?
Let us calculatethe (crosg-correlation function of the R
transverse  fluctuations of the two  polymgrs
IDx1D x5 X1 (t1)Xa(to)exd — B(H1+H,) [/Z. An overbar indi- FIG. 1. A schematic diagram showing an effective contact in-

cates averaging over disorder realizations. We may evaluateraction between two polymers that arises due to cross-correlation
it in lowest order in\ in a perturbation expansion. Expand- of the random potentiglsee text
ing the Boltzmann factor in powers af, we obtain

(f1(k,D)fy(k' t"))=2D&%k+k')o(t—t"). (22
J’ Dx1 DXy X1 X eXd — B(H1+H»)]/Z
If (f1(x,t)fo(x",t"))=0 or({V,(x,t)V,(x',t"))=0, then af-
ter averaging over disorder the effective Hamiltonian is just
1T+ AV o+ NV the sum of two noninteracting single chain Hamiltonians.
Obviously, there is no attractive interaction between the two
polymers. However, since both the polymers are in the same
17) random medium, there are of course correlations between the
random potentials seen by the two polymers, which, as we
will see, mediate interactions between the polymers. Equiva-
In the right-hand side a subscripindicates cumulants, i.e., lently said, the polymers interact through the disordered me-
contributions only from the connected diagrams should belium. Mathematically, on averaging over the disorder distri-
considered. We take bution, due to the nonzero cross-correlations of the noises, a
F e , , new termmﬁéd[xl(r)—xz(r)] is generated in the effective
(VOx0 HV(x1, 1)) =2D1.80x, =) 81— t"), Hamiltonian. This new “effective potential” can be inter-
preted as an attractive interaction felt by one of the polymers
when it is in contact with the othgisee Fig. 1 This will
cause, as we have seen before, quantities(le&,) to be
onzero for certain strengths of the interactions. We show
elow that this effective attractive interaction leads to a
phase transition involving the two DPs.
The total free energy of the two DPs after averaging
(V1(X0,t)Va(Xp, 1))y =2D 8(x,—x,) 8(t—t"), (19)  over disorder distribution is a function of the couplinds
5 F=F(D,t). We define, as in Ref7] the order parameter as
whereD may differ fromD; or D, as the two polymers may the derivative of the quenched free energy with respect to the
be distinguishable. We want to investigate the effect of thisappropriate coupling constant:
on the phase diagram of the polymers. We give a physical
interpretation of this shortly below. Let us see what this con- 1t 1 dF(D,1)
dition means in terms of the KPZ description: The free en- q(t)= ?f d7 8(X1(7) —Xo(7))=— P
ergiesh,; and h, of the two polymers satisfy usual KPZ 0 dD -0
equations. Without any loss of generality, we =D, (23
=D. We have[see Eq(18)]

2

_j . dx;
= X; Xj €X B &, dr

FN2(V212) o+ N2(VaI2) N2V V) ot - - -

(V(X2, )V(X5,t")y=2D,8(X,—X5) S(t—t"). (18

These we call “autocorrelations” in a sense that in ELp)
coordinates refer to the same DP. It is clear that unles
(V1(Xq,t)Vy(x,,1)) is nonzero, the cross-correlation func-
tion (as defined aboyevanishes identically. We choose

o , ) Here F(D,t) is the scaling part of the effective free energy
(fa(k,Df1(K',t')=2D6%k+k)8(t=t'), (20  for the two polymers. Following Ref7] we start with a

<f2(k't)f2(k/1t’)>=2D5d(k+k’)5(t—t’). 21) scaling form

Such a choice, witl{f;f,)=0 would automatically guaran- F(D,ty=t¥*f(Dt™%2"%). (24)
tee thath, andh, represent the free energies of tigenti-

cal, mutually noninteractingpolymers in a disordered me- Here, ¢, is the crossover exponent. This gi&g

dium. It is clear that having a nonzef®(k,t)V,(k',t"))

implies a nonzerdf(k,t)fo(k’,t")): q=t>2Q(Dt~ #2/?), (25
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hy

I
FIG. 2. The one-loop diagram, contributing to the renormaliza- . o
tion of D; continuous lines indicatk; or h, lines as mentioned in X g X g
the figure and the small filled circles indicate b&e=D,.

where3,,=(xy— ¢,—2z)/z. We calculate the crossover expo- (2) (o)

nent in a one-loop dynamic renormalization group calcula-

tion. L . FIG. 3. A diagram indicating the flow around the fixed points in
Renormalization group flow equations for the parameters -~

of a single KPZ equatiorinamely, for», D, and\) have 9~ 9 Plane:@ d=2+e, (b) d=1.

already been calculatdd]. We present the calculation for

D: The following diagram will contribute at the one-loop Theseé equations have fixed point solutiods [go= 0g

level (Fig. 2). =0]; X, [g=2d(d—2)/kg(2d—3)=g.,9=0], Y,[g=0,
The one-loop integral, after frequency integration be-g=d—2], A, [g_gc,g_gc]_ We show the flows in a fixed

comesD?[[d%/(27)9](1/13g%) ~A%"2, whereA is some  point diagram in Fig. 3.

momentum scale coming from the lower limit of the one- Among these value€:(0,0) ford=2+ € are stable and

loop integral. We see that this integral has the same infraredorrespond to Gaussian polymers. é&&1, g=g., andg

behavior as the usual one-loop integral that comes in for the. 7, 2.7, are the stable fixed points implying that any small

renormalization of the noise correlations in a single KPZ, 10 1t of disorder makes the polymer nonGaussiand At
equation. Under rescaling of space and time, different param-.

eters scale according to their ‘ima dimensions: 2+€Y=(g=0g=d-2), X_—(g—gc,g—O), A=(g
vb? 2y N—bZt X2\ D p? 4 2xp and D =g.,9=9,.) are all unstableA is unstable along both the
T2 ) directions,X is unstable along direction, andY is unstable
—b XD. The flow equations for different coupling con- ~ .
stants are along g direction. Hence they indicate second-order phase
transitions. Atd=1, A is still unstable along direction.Y
dv takes a negative ordinate, reflecting presumably a bound
ar =[z—2+kyg(2—d)/4d]v, (26) state not describable by a fixed point. So if one moves along
AX one always encounters a second-order phase transition.
The disorder averaged Hamiltonian has potential terms of the
_)‘:[ZJFX_Z])\' 27y forms —g8(X1—X1),—g8(Xa—X3),—g8(X;—X,). The last
dl term comes from the cross-correlation effects. Due to the
negative sign it is attractive in nature. Recall thatlin 1 X

D is stable alongy direction indicating that any small amount
ar ~[z=d=2x+gky/4]D, (28 of disorder is relevant ini=1. However X is unstable along
g direction, which shows that unless the disorder strength
dD exceeds a minimum_ value, the two polyme_rs do not attract
= =[z—d—2y+gky/4]D, (29)  each other. We obtain the following phases in the phase dia-

gram (see Fig. 3 characterized by stable fixed points.

) ) (1) In Fig. 3a), i.e., ford=2+ € we have the following.
where a is the smallest length scale in the problem, and (a) Free Gaussian polymers characterized by the stable
ky'=29"1791(d/2) and g=(a/7)2"9DA%v® and g fixed pointO(0,0) (denoted by ).

=(a/m)2 9DA2/1»® are the dimensionless coupling con-  (b) Free “strong-disorder—KPZ" polymers, i.e., polymers
stants. It is easy to obtain the flow equations for the couplmgjo not attract each other but their individual quctuatlons are

constants: influenced by the disordefdenoted by II. This phase is
characterized by a stable fixed point of the for@,(0), not
dg 2d—3 accessible in perturbation theory.
d——(2 d)g+ky—— >d 9, (30 (c) Bound Gaussian polymers: individual polymer fluc-

tuations are unaffected by disorder but they are bound due to
_ the effective attractive interactiofdenoted by Il). This
g 2—d phase is characterized by a stable fixed point of the form

(0,G,), not accessible in perturbation theory.
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(d) Bound KPZ polymers: individual polymer fluctuations (Vi(ky,t) - - Vi(Km o tm) D 8(kq+ - - - +Kpp)
are affected by disorder, also they form a bound pair due to

an effective attractive interactiofdenoted by IV. This XO(ty—ty) - (ty-1—tm).
phase is characterized by a stable fixed point of BeQ) (35)
again not accessible in perturbation theory. i ) ] ] )

(2) In Fig. 3(b), i.e., ford=1, we have the following. We find out the scaling dimension @&, in a one-loop ap-

stable fixed point2,0) (denoted by ). Exponents are known due toD,; an effective interaction that makes many point

exactly correlation functions(xy, ... Xy, nonvanishing. Now the
(b) Bound KPZ polymergdenoted by Il by a stable fixed €ffective free energyaveraged over random potentiaf the
point not accessible in perturbation theory. m polymers is a function of all these effective couplings:

Note that in Fig. 3, the Iineg=§ is invariant under the F=F(5 D) (36)
RG transformation; this is just a reflection of the fact that if N Prmme
the two DPs are indistinguishable, they remain so in a coarsgg|jowing the usual definiton of order parameter as the de-

grained description. _ rivative of the free energy with respect to the appropriate
In Ref. [7] overlaps have been calculated a&=(g.,g coupling constant, we obtajr7]
=g0.)- We, however, investigate the nature of the phase tran-

i, o~ o — !
sitions consideringy as the ordering field ag=¢ and g _ 1 dF(Dqt 9

= . 3
=0. Hence our definitions of order parameter are given by m t dDp, D =0 37
q~ dF (32) It is easy to see that, in our approach, each of ithe
dD* D*:O’ polymers’ free energy will satisfy the usual KPZ equation

separately. As in Sec. Il, we assume noises present in these
whereD* is an effective coupling constant that is a function KPZ equations will have nonzero cross-correlations between
of g. In other words, we wish to calculate the crossoverthem:
exponentg, for the two polymers at the fixed poing{,0) in

~ L J A ) )
the g-g plane. It is given by Ehﬁ E(Vhl) =vV2h,+fq, (39)
bp=2x+d—2+ 8,,=0. 33
A
Hence, we obtair®,=(x—2z)/z in all dimensions. In par- —Nat E(th)ZZVV2h2+fz, (39

ticular, ind=1, ¥,=—1/2 and ind=2+¢, 2,=—1 [since
x=0in O(€)]. The length scale exponentat the unstable
fixed pointsA andY in Fig. 3@ (i.e., ford>2) is the same,

however atO in Fig. 3b) (i.e.,d=1) it is different fromA. J N 5 5
ﬁher E(th) =vVeh,+f,, (40
lll. EFFECTIVE INTERACTIONS INVOLVING
ARBITRARY NUMBER OF POLYMERS with noise correlations given as in Sec. Il
In this section, we generalize our previous calculations to (fi(k,O)fi(k",t"))y=DS(k+k") d(w+w'), (41)
show that when there are DPs the effective free energy can
have any arbitrary-polymer (1=<m) interactions. We show (filk, (K" 1)) =Do(k+k" ) s(w+w');i#]. (42)

that these interaction terms naturally arise in the free energy

after disorder averaging. Let us examine the quantity We define the relevant order parameter as

JIi—1 Dxx; exd —BH], where H=H;+---+H,, is the

sum of the Hamiltonians ah polymers[each being the same e 1J’td7<
m t 0

m—1

i[ll SX(T—Xn(7) ). (43

as Eq.(1)]. Following our calculations of the previous sec-
tion, we write

We note that even though our definition of order parameter is
actually different from the one defined in RET], physically

it measures the same thing. Far= 2, the two definitions are
identical. It is evident thatVy, ... Vy)oe(f, ... o).

f I1,Dxx; exp(— BH)/Z

dx?
= | IIDxx; ex E —')
f ' F( Todr A. Effective interactions between three polymers

X[L14 - +N"(Vq, ... V] (34 Let us consider a situation where we have three polymers.
Due to the Gaussian statistics of the random potential,
It is clear that then-point cross-correlation function of trans- (h;(x;,t)h,(X,,t)h3(X3,t)) is zero at the bare level. How-
verse fluctuations is nonzero only (¥, ... V)¢ is non- ever, due to the nonlinearity in the equation,
zero. We calculatéVy, ... V) to O(N™) (= one-loop in  (hy(Xq,t)h,y(X,,t)hs(X3,t)) is nonzero at the one-loop level.
the KPZ description of the problem. As we shall see later, In Fig. 4 we show the one-loop diagrams.
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D>
@
Dy Dy
®D; ®D,y
L
D o
23 D
34
h h
2 3 hj h4

FIG. 4. A diagram showing(a) one-loop contribution to
(hyh,h3). The filled circles refer td;,=D3=D,3=D.

The one-loop diagram in Fig. 4 scales as

FIG. 5. A schematic one-loop diagram contributing to
(f1fafafs). Dipy=Dos=D3s=D14=D.

4 (f1fafafg)=D4d(X1—X2) 8(X1 = X3) (X1 =X4).  (49)
= 9 = - _
”D37\3f Vs—q4~|337\SAd “~gPATY (44 we calculateg, from the relation

1 dF(Dgt~ %2
where A is the lower cutoff of the momentum integral. We Qu=—— dF(Dat ™7 ~ta, (50
see that even though the bare noise is Gaussian the effective t Dy D,=0

noise has nonzero third cumulafwhich arises due to the
nonlinear term in the KPZ equatin

(f1(ky,t)fa(ky,t)fa(Ks,ts))

=D3d(ky+ky+Kkg)o(t;—t;) 8(t;—t3). (45

The naive dimension oD is z—2d—3y and anomalous
dimension is 4-d [see Eq.{44)]. Hence
¢3=—(z—2d—3xy+4—d)=—(4—3d)=3e¢

atd=2+ e and[sincez=2+0(€?) and y=0(€?)] conse-
quently,

(46)

33=(X— ¢3—2)/z=(—3€-2)/2 (47)

at d=2+e€. We notice that3;<0, indicating that in the
thermodynamic limit i.e., whent—o, qg~t>3~|T
—T¢ "*—0 asT—T,-. Here, v is the correlation length
exponent.

B. Effective interactions between four polymers

Let us consider a situation when we have four polymers in

the medium. We define the order parameter

1t
Gu=~ ¢ | dr{a00 x50 - x3) 800 - x0). - (48)

Similar to our analysis of three polymers, we calculate

(f1(Xq,t) Fo(Xo,t0) F3(X3,t3) T4(X4,t4)) in @ one-loop pertur-

bation theory. The one-loop diagram is shown in Fig. 5. The

one-loop integrals scale as(D*/v")A9 6~¢™PA4-6~D,

and disappear iD vanishes. As in our previous analysis, this

can be interpreted as if the free enerdigs. . . ,h, satisfy a

linear equation and the noises have four-point cross-

correlations given by

We find ¢,= —(z—3d—4x+6—d)=4€. Hence, we obtain
Sa=(—4e—2)/2,i.e.,q,~t(32"2 Figure 5 shows a one-
loop diagram contributing tqf,f,f3f,), Diy;=Dy3=D34
= D14: 5 .

C. Effective interactions betweenm polymers

It is easy to convince oneself that any higher point corre-
lation of the random potential is nonzero. Notice that these
m-body effective interactions are built from the pairwise
cross-correlations. Since the two-chain effective interaction
is attractive, thesen-chain interactions constructed out of
that are also attractive. Figure 6 is a typical diagram that
contributes atO(A™) (=one-loop to (Vq, ..., V) or to

(f1, ..., fm)- A nonzero value of this ensures phase transi-
h h
2 Dpp 1
FIG. 6. Diagramatic contribution te<f,,f,, ..., fmn> up to

one-loop order.
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tions involving m polymers. The one-loop integrals scale as

~A€T472M We immediately obtain
¢

This leads to
O~ t5m, S p=[—(m)e—2]/2,

m=—[z—(m—=1)d—my+2m—4—¢€]=me. (51

(52

atd=2+e. Naturally, the effective free energy contains all
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V. SUMMARY

In this paper, we have discussed how disorder generates
attractive interactions between two directed polymers in a
disordered medium. We show that due to these attractive
interactions the polymers undergo a binding-unbinding tran-
sition. We argue that in terms of the KPZ language this is
due to the cross-correlations of noises in the two KPZ equa-
tions satisfied by the respective free energies of the two poly-

the interaction terms that are generated due to disorder avemers. We present a detailed analyis of the phase diagram.
aging. Equivalently, the disorder mediates interactions beThe strength of the cross correlati@re., the strength of the

tween arbitrary numbers of polymers.
At d=1, alongAX, ¢,=—1/2—m/2<0 (m>2), hence

effective attractive interactigrappears as a new parameter in
the problem. This is relevant, in an RG sense, above a

the effectivem-point coupling disappears in the large length threshold value in any space dimensidnin d=2+ ¢, we

scale limit. Thus there is nownbody interaction in that
limit. However, ¢,=0, i.e., effective two-body attractive in-
teraction is marginal, causing two polymers to attract.

IV. TRANSITIONS ALONG THE LINE YO

So far we focused on transitions gt- €, i.e., along the
line AX. But one could have followed a different path in the
(g-9) plane: In particular, if one follows the ling=0 then
the unstable fixed point (§*) gives rise to transitions with
different exponents. Along this ling* =0, henceandividual
polymers are fredi.e., randomness of the medium is irrel-

evant as far as their transverse fluctuations are concerne

these fluctuations are still describeddy2 andy=d/2 ind

dimensiong However these free polymers still see attractive

contact interactions in presence of one another that cau
these transitions. At dimensiah=2+¢€, g*=0,z=2, and
x=4d/2; hence, at this fixed point:

¢Gm=—[2—(m—=21)d—my+ 2m—4—e]=(§m—1) €,

(53
/e

Physically along this line polymers are individually frege-
scribed by Gaussian polymer exponente® matter what the

value ofg is. If the value ofg is higher than a critical value

3 2
Emé—

Sm=(X—dm—2)/z= (54)

get a new nontrivial unstable fixed point signaling a second-
order binding-unbinding transition. At=2+ ¢, we get four
different phases, two of which are new arising due to the
cross-correlation only. Similarly ind two phases appear,
one of them is new. These effects can be realized by putting
different kinds of polymers in the medium. Notice that if the

two DPs are identical theg=g and there is no independent
variation ofg or g. In that case, the system is described by

the lineg=g. It will be very interesting to examine this issue
of disorder-induced phase transitions of DPs by using a
variational replica approacfl5] or a replica Bethe ansatz
approack[lG]. In a typical replica calculation, the-replica

amiltonian H,, becomes a function of the replica-replica
interaction terms. In the present case, in a replica calculation,
H, will be the replica Hamiltonian for @ DPs. It will in-
Sfolve “cross-replica” interaction terms arising due to the
cross-correlation of the random potential. It will be interest-
ing to see how the results obtained in this paper can be ob-
tained in a replica approach.

Note added in proofThe problem of two identical poly-
mers with attractive interactions was solved for arbitrary di-
mensiond in Ref.[17]. The author wishes to thank M. ka
sig for pointing this out.
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