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Phase transitions and noise cross-correlations in a model of directed polymers
in a disordered medium

Abhik Basu*
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India

and Poornaprajna Institute of Scientific Research, Bangalore, India
~Received 2 May 2000!

We show that effective interactions mediated by disorder between two directed polymers can be modeled as
the cross-correlation of noises in the Kardar-Parisi-Zhang~KPZ! equations satisfied by the respective free
energies of these polymers. When there are two polymers, disorder introduces attractive interactions between
them. We analyze the phase diagram in detail and show that these interactions lead to new phases in the phase
diagram. We show that, even in dimensiond51, the two directed polymers see the attraction only if the
strength of the disorder potential exceeds a threshold value. We extend our calculations to show that if there are
m polymers in the system, thenm-body interactions are generated in the disorder averaged effective free
energy.

PACS number~s!: 64.60.Ak, 05.40.2a, 75.10.Nr, 36.20.2r
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I. INTRODUCTION

A. Background

Studies of phase transitions in presence of disorder h
opened up new problems in statistical mechanics. Phase
sitions in spin glasses and polymers in disordered media
typical examples@1–5#. Various attempts have been made
understand such transitions see, e.g., Refs.@6,7#. In Ref. @6#
replica trick has been used while in Refs.@5,7,9# dynamic
renormalization group has been used and the relevant e
nents~see Sec. II! have been calculated. The nature of ov
laps, if there is more than one polymer in the system,
also been examined@7#. However, whether directed poly
mers ~DP! can interact via disorder in the absence of a
direct interaction has not yet been studied. In this paper,
ask: If there are more than one DPs in the disordered
dium, can they interact through disorder in absence of
direct mutual interaction? We find that in the absence of
direct interactions, disorder mediates effective attractive
teractions between the DPs that lead to binding transiti
between them, which are qualitatively similar to@7#.

A directed polymer ind11 dimensions is just a directe
string stretched along one particular direction with free flu
tuations in all otherd transverse directions. The Hamiltonia
of a directed polymer in a quenched random potential is

H

kBT
5E

0

t

dtFn2 S dx

dt D 2

1
l

2n
V„x~t!,t…G , ~1!

wherex(t) is thed-dimensional transverse spatial coordina
of the directed polymer at lengtht. The first term is the
energy due to transverse fluctuations~elastic energy! and the
second one is the potential energy due to disorder. In a
dom environment there is a competition between the po
tial energy due to randomness and the elastic energy.
random potentialV is chosen to be Gaussian-distributed, ze
mean with a correlation given by
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^V~k,t !V~k8,t8!&52Ddd~k1k8!d~ t2t8!. ~2!

The elastic termn(dx/dt)2 attempts to smoothen out the D
@minimumn(dx/dt)2 everywhere#, while the disorder poten-
tial favors the DP to take a rough profile so that the DP c
go through the low energy paths. At a low enough tempe
ture the second option is energetically favorable and
disorder-dominated super diffusive phase is produ
@2,5,6,10,11#. At d.2 a transition is observed from low tem
perature strong disorder phase to high temperature sm
phase@5,12,13#, which is described by an unstable fixe
point toO(e) in a dynamic RG calculation@5,10#. There is a
one-to-one mapping between the problem of a directed p
mer in a random medium and the nonequilibrium surfa
growth problem described by the Burgers/Kardar-Par
Zhang~KPZ! equation. The Burgers equation is the simple
nonlinear generalization of the diffusion equation@14#. This
equation is used to describe diverse phenomena: struc
formation in astrophysical situations, turbulence, etc. T
can be mapped into the Kardar-Parisi-Zhang~KPZ! equation,
which is a prototype model for nonequilibrium growth su
faces:

]h

]t
1

l

2
~¹h!25n¹2h1h. ~3!

The Gaussian noise satisfies

^h~x,t !h~x8,t8!&5Ddd~x2x8!d~ t2t8!. ~4!

The long wavelength and long time properties of this eq
tion have been studied extensively using dynamic renorm
ization group method@1#.

Interestingly, this equation can be transformed into a l
ear equation by Cole-Hopf transformation@1#:

h~x,t !5~2n/l!ln W[kBT ln W. ~5!

The resultant linear equation is a diffusion equation with
multiplicative noise:
4675 ©2000 The American Physical Society
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]W

]t
5n¹2W1

h

2n
W. ~6!

The partition functionZ of a directed polymer satisfies th
above equation witht being the coordinate parametrizing th
length of the polymer. It immediately follows that the fre
energy of the DP,h[kBT ln Z satisfies the KPZ Eq.~3!. The
corresponding Hamiltonian is the Hamiltonian of a direct
polymer as given in Eq.~1!. The relation between the surfac
growth problem described by the KPZ equation and the
rected polymer problem described by the Hamiltonian~1! is
as follows: The temperature scale of the polymer has b
set to one; hence the elastic modulus of the polymer is gi
by c[1/2n, and the height variableh of the KPZ equation
gives the free energy of the polymer problem. The proba
ity distribution of the quench random potentialV(x,t) is
same as that of the noisef (x,t) in the KPZ Eq.~3!. The
relevant exponents arex and z51/z. x describes the free
energy fluctuationsf ;tx/z (x is also the roughness expone
of the height fieldh. z is given by^@x(t)2x(0)#2&;t2/z and
is also the dynamic exponent ofh. Due to the Galilean in-
variance of the KPZ equation there is an exact expon
relation

x1z52. ~7!

B. Results

In this paper, we investigate when there are two DPs
random medium whether the medium can induce interact
leading to phase transitions in absence of any direct mu
interactions between the polymers. We find that disorder
deed induces effective attractive interactions between
polymers that causes phase transitions in the system
terms of the KPZ descriptions, this implies that noises in
individual KPZ equations satisfied by the free energies of
respective polymers have nonzero cross-correlations. In
II, we show that if there are two polymers in the system, th
cross-correlations of the random potentials seen by th
may lead to a binding-unbinding transition of them. We an
lyze the phase diagram and show that new phases ap
which do not exist when there is only one polymer in t
medium. We calculate the crossover exponent~defined be-
low!. In Sec. III, we generalize our calculations and sh
that effectivem-polymer interactions are also generated. W
summarize our results in Sec. IV.

II. TWO DIRECTED POLYMERS IN A RANDOM MEDIUM

A. Model

In absence of any direct interactions, the Hamiltonian
two DPs in a random medium becomes just the sum of
individual HamiltoniansH1 andH2:

H5H11H25E
0

tFn2 S dx1

dt D 2

1
n

2 S dx2

dt D 2

1V1~x1 ,t !1V2~x2 ,t !G , ~8!
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In two papers@7#, Mukherjee and Bhattacharjee have studi
overlap of directed polymers in a random medium~see also
@8# for a related problem on a lattice!. They calculated the
overlap of polymers by introducing new interactions in t
Hamiltonian~8! and calculated the scaling behavior using
dynamic renormalization group approach. Their modifi
Hamiltonian is given by@7#

Hm5(
i 51

m

Hi1~l/2g!vmE
0

t

dt )
i 51

m21

d„@xi ,i 11~t!#…, ~9!

where Hi is the Hamiltonian~1! for the i th polymer and
xi ,i 115xi2xi 11. The presence of the additionald-functions
interactions ensure that the overlap betweenN polymers is
nonzero. Here,Hm is the Hamiltonian~9!. However, due to
the additional terms in their Hamiltonian representing t
overlap, the equation that is satisfied by the correspond
total free energy is not quite the usual KPZ equation; it h
an additional term as noise:

]h

]t
5(

j 51

m Fg¹ j
2h1

l

2
~¹ jh!2G1g0 , ~10!

where

g05(
j 51

m FgV~xj ,t !1vm )
j 51

m21

d„xj , j 11~t!…G . ~11!

Due to this unusual looking noise term, although Eq.~10!
looks like a higher (md) dimensional KPZ equation, it is no
really so. With this modified Hamiltonian/KPZ equation th
crossover exponentsfm for overlap ofm chains forvm→0
have been calculated in Ref.@7#. We, however, do not in-
clude additional interactions and work with the Hamiltoni
~8!.

B. Effective interactions between two directed polymers:
The phase diagram

Let us again consider the Hamiltonian for two DPs in
disordered medium:

H5H11H25 (
i 51,2

E
0

t

dtFn2 S dxi

dt D 2

1
l

2n
V„xi~t!,t…G ,

~12!

where H1 and H2 are the Hamiltonians for the two DPs
respectively,x1 andx2 are their transverse fluctuations. W
take the total Hamiltonian to be additive~i.e., a sum ofH1
and H2) as there are no direct mutual interactions betwe
the polymers.V15V(x1) and V25V(x2) are the potential
energies. The total partition functionZ is the product of the
individual partition functions:

Z5Z1 Z25*Dx1 Dx2 exp@2b~H11H2!#.

Z1andZ2 satisfy

]Z1

]t
5n¹2Z11Z1V1 , ~13!
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]Z2

]t
5n¹2Z21Z2V2 , ~14!

while the free energiesh1 and h2 satisfy @as Z1,2
5exp(2bh1,2)]

]h1

]t
5

l

2
~¹h1!21¹2h11 f 1 , ~15!

]h2

]t
5

l

2
~¹h2!21¹2h21 f 2 . ~16!

Let us calculate@the ~cross!-correlation function of the
transverse fluctuations of the two polymer#
*Dx1D x2 x1(t1)x2(t2)exp@2b(H11H2)#/Z. An overbar indi-
cates averaging over disorder realizations. We may eval
it in lowest order inl in a perturbation expansion. Expan
ing the Boltzmann factor in powers ofl, we obtain

E Dx1Dx2 x1x2 exp@2b~H11H2!#/Z

5E PDxi xi expF2bS (
i 51,2

dxi
2

dt D 11lV̄1c1l2V̄2c

1l2~V1
2/2!c1l2~V2

2/2)c1l2~V1V2!c1•••G , ~17!

In the right-hand side a subscriptc indicates cumulants, i.e.
contributions only from the connected diagrams should
considered. We take

^V~x1 ,t !V~x18 ,t8!&52D1d~x12x18!d~ t2t8!,

^V~x2 ,t !V~x28 ,t8!&52D2d~x22x28!d~ t2t8!. ~18!

These we call ‘‘autocorrelations’’ in a sense that in Eq.~18!
coordinates refer to the same DP. It is clear that unl
^V1(x1 ,t)V2(x2 ,t)& is nonzero, the cross-correlation fun
tion ~as defined above! vanishes identically. We choose

^V1~x1 ,t !V2~x2 ,t8!&52D̃d~x12x2!d~ t2t8!, ~19!

whereD̃ may differ fromD1 or D2 as the two polymers may
be distinguishable. We want to investigate the effect of t
on the phase diagram of the polymers. We give a phys
interpretation of this shortly below. Let us see what this co
dition means in terms of the KPZ description: The free e
ergies h1 and h2 of the two polymers satisfy usual KP
equations. Without any loss of generality, we putD15D2
5D. We have@see Eq.~18!#

^ f 1~k,t ! f 1~k8,t8!&52Ddd~k1k8!d~ t2t8!, ~20!

^ f 2~k,t ! f 2~k8,t8!&52Ddd~k1k8!d~ t2t8!. ~21!

Such a choice, witĥ f 1f 2&50 would automatically guaran
tee thath1 andh2 represent the free energies of twoidenti-
cal, mutually noninteractingpolymers in a disordered me
dium. It is clear that having a nonzero^V1(k,t)V2(k8,t8)&
implies a nonzerô f 1(k,t) f 2(k8,t8)&:
te

e

s

s
al
-
-

^ f 1~k,t ! f 2~k8,t8!&52D̃dd~k1k8!d~ t2t8!. ~22!

If ^ f 1(x,t) f 2(x8,t8)&50 or ^V1(x,t)V2(x8,t8)&50, then af-
ter averaging over disorder the effective Hamiltonian is j
the sum of two noninteracting single chain Hamiltonian
Obviously, there is no attractive interaction between the t
polymers. However, since both the polymers are in the sa
random medium, there are of course correlations between
random potentials seen by the two polymers, which, as
will see, mediate interactions between the polymers. Equ
lently said, the polymers interact through the disordered m
dium. Mathematically, on averaging over the disorder dis
bution, due to the nonzero cross-correlations of the noise
new term}D̃dd@x1(t)2x2(t)# is generated in the effective
Hamiltonian. This new ‘‘effective potential’’ can be inter
preted as an attractive interaction felt by one of the polym
when it is in contact with the other~see Fig. 1!. This will
cause, as we have seen before, quantities like^x1x2& to be
nonzero for certain strengths of the interactions. We sh
below that this effective attractive interaction leads to
phase transition involving the two DPs.

The total free energyF of the two DPs after averaging
over disorder distribution is a function of the couplingsD̃:
F[F(D̃,t). We define, as in Ref.@7# the order parameter a
the derivative of the quenched free energy with respect to
appropriate coupling constant:

q~ t !5
1

t E0

t

dt d„x1~t!2x2~t!…52
1

t

dF~D̃,t !

dD̃
U

D̃50

.

~23!

HereF(D̃,t) is the scaling part of the effective free energ
for the two polymers. Following Ref.@7# we start with a
scaling form

F~D̃,t !5tx/zf ~D̃t2f2 /z!. ~24!

Here,f2 is the crossover exponent. This gives@7#

q5tS2Q~Dt2f2 /z!, ~25!

FIG. 1. A schematic diagram showing an effective contact
teraction between two polymers that arises due to cross-correla
of the random potential~see text!.
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whereS25(x2f22z)/z. We calculate the crossover exp
nent in a one-loop dynamic renormalization group calcu
tion.

Renormalization group flow equations for the paramet
of a single KPZ equation~namely, forn, D, and l) have
already been calculated@1#. We present the calculation fo
D̃: The following diagram will contribute at the one-loo
level ~Fig. 2!.

The one-loop integral, after frequency integration b
comesD̃2*@ddq/(2p)d#(1/n3q2);Ld22, whereL is some
momentum scale coming from the lower limit of the on
loop integral. We see that this integral has the same infra
behavior as the usual one-loop integral that comes in for
renormalization of the noise correlations in a single K
equation. Under rescaling of space and time, different par
eters scale according to their na¨ive dimensions:
n→bz22n, l→bz1x22l, D→bz2d22xD, and D̃

→bz2d22xD̃. The flow equations for different coupling con
stants are

dn

dl
5@z221kdg~22d!/4d#n, ~26!

dl

dl
5@z1x22#l, ~27!

dD

dl
5@z2d22x1gkd/4#D, ~28!

dD̃

dl
5@z2d22x1g̃kd/4#D̃, ~29!

where a is the smallest length scale in the problem, a
kd

2152d21pd/2G(d/2) and g5(a/p)22dDl2/n3 and g̃

5(a/p)22dD̃l2/n3 are the dimensionless coupling co
stants. It is easy to obtain the flow equations for the coup
constants:

dg

dl
5~22d!g1kd

2d23

2d
g2, ~30!

dg̃

dl
5g̃S 22d1kd

g̃

4
23kdg

22d

4d
D . ~31!

FIG. 2. The one-loop diagram, contributing to the renormali

tion of D̃; continuous lines indicateh1 or h2 lines as mentioned in

the figure and the small filled circles indicate bareD̃5D12.
-

s

-

d
e

-

d

g

These equations have fixed point solutionsO, @g050 g̃

50#; X, @g52d(d22)/kd(2d23)[gc ,g̃50#, Y,@g50,
g̃5d22], A, @g5gc ,g̃5gc#. We show the flows in a fixed
point diagram in Fig. 3.

Among these values,O:(0,0) for d[21e are stable and
correspond to Gaussian polymers. Atd51, g5gc, and g̃

5g̃c are the stable fixed points implying that any sm
amount of disorder makes the polymer nonGaussian. Ad

521e,Y[(g50,g̃5d22), X[(g5gc ,g̃50), A[(g
5gc ,g̃5gc) are all unstable.A is unstable along both the
directions,X is unstable alongg direction, andY is unstable
along g̃ direction. Hence they indicate second-order pha
transitions. Atd51, A is still unstable alongg̃ direction.Y
takes a negative ordinate, reflecting presumably a bo
state not describable by a fixed point. So if one moves al
AX one always encounters a second-order phase transi
The disorder averaged Hamiltonian has potential terms of
forms 2gd(x12x18),2gd(x22x28),2g̃d(x12x2). The last
term comes from the cross-correlation effects. Due to
negative sign it is attractive in nature. Recall that ind51 X
is stable alongg direction indicating that any small amoun
of disorder is relevant ind51. However,X is unstable along
g̃ direction, which shows that unless the disorder stren
exceeds a minimum value, the two polymers do not attr
each other. We obtain the following phases in the phase
gram ~see Fig. 3! characterized by stable fixed points.

~1! In Fig. 3~a!, i.e., for d521e we have the following.
~a! Free Gaussian polymers characterized by the sta

fixed pointO(0,0) ~denoted by I!.
~b! Free ‘‘strong-disorder–KPZ’’ polymers, i.e., polyme

do not attract each other but their individual fluctuations
influenced by the disorder~denoted by II!. This phase is
characterized by a stable fixed point of the form (G1,0), not
accessible in perturbation theory.

~c! Bound Gaussian polymers: individual polymer flu
tuations are unaffected by disorder but they are bound du
the effective attractive interaction~denoted by III!. This
phase is characterized by a stable fixed point of the fo
(0,G̃1), not accessible in perturbation theory.

-

FIG. 3. A diagram indicating the flow around the fixed points

g2g̃ plane:~a! d521e, ~b! d51.
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~d! Bound KPZ polymers: individual polymer fluctuation
are affected by disorder, also they form a bound pair due
an effective attractive interaction~denoted by IV!. This
phase is characterized by a stable fixed point of the (G,G̃)
again not accessible in perturbation theory.

~2! In Fig. 3~b!, i.e., for d51, we have the following.
~a! Free ‘‘strong-disorder/KPZ’’ polymers described b

stable fixed point~2,0! ~denoted by I!. Exponents are known
exactly.

~b! Bound KPZ polymers~denoted by II! by a stable fixed
point not accessible in perturbation theory.

Note that in Fig. 3, the lineg5g̃ is invariant under the
RG transformation; this is just a reflection of the fact tha
the two DPs are indistinguishable, they remain so in a coa
grained description.

In Ref. @7# overlaps have been calculated at (g5gc ,g̃
5gc). We, however, investigate the nature of the phase tr
sitions consideringg̃ as the ordering field atg5e and g
50. Hence our definitions of order parameter are given

q;
dF

dD* U
D* 50

, ~32!

whereD* is an effective coupling constant that is a functi
of g̃. In other words, we wish to calculate the crossov
exponentf2 for the two polymers at the fixed point (gc,0) in
the g-g̃ plane. It is given by

f252x1d2z1d1250. ~33!

Hence, we obtainS25(x2z)/z in all dimensions. In par-
ticular, in d51, S2521/2 and ind521e, S2521 @since
x50 in O(e)#. The length scale exponentn at the unstable
fixed pointsA andY in Fig. 3~a! ~i.e., for d.2) is the same,
however atO in Fig. 3~b! ~i.e., d51) it is different fromA.

III. EFFECTIVE INTERACTIONS INVOLVING
ARBITRARY NUMBER OF POLYMERS

In this section, we generalize our previous calculations
show that when there arem DPs the effective free energy ca
have any arbitraryn-polymer (n<m) interactions. We show
that these interaction terms naturally arise in the free ene
after disorder averaging. Let us examine the quan
*P i 51,mDxxi exp@2bH#, where H5H11•••1Hm is the
sum of the Hamiltonians ofm polymers@each being the sam
as Eq.~1!#. Following our calculations of the previous se
tion, we write

E P iDxxi exp~2bH !/Z

5E PDxxi expS (
i

dxi
2

dt D
3@11•••1lm~V1 , . . . ,Vm!#. ~34!

It is clear that them-point cross-correlation function of trans
verse fluctuations is nonzero only if^V1 , . . . ,Vm&c is non-
zero. We calculatêV1 , . . . ,Vm& to O(lm) ([ one-loop! in
the KPZ description of the problem. As we shall see late
to

f
se

n-

r

o

y
y

^V1~k1 ,t1!•••Vm~km ,tm!&}Dmd~k11•••1km!

3d~ t12tm!•••d~ tm212tm!.

~35!

We find out the scaling dimension ofDm in a one-loop ap-
proximation. We examine below the nature of the transit
due toDm ; an effective interaction that makes many po
correlation functionŝ x1 , . . . ,xm& nonvanishing. Now the
effective free energy~averaged over random potential! of the
m polymers is a function of all these effective couplings:

F[F~D̃, . . . ,Dm!. ~36!

Following the usual definiton of order parameter as the
rivative of the free energy with respect to the appropri
coupling constant, we obtain@7#

qm52
1

t

dF~Dmt2fm /z!

dDm
U

Dm50

. ~37!

It is easy to see that, in our approach, each of them
polymers’ free energy will satisfy the usual KPZ equati
separately. As in Sec. II, we assume noises present in them
KPZ equations will have nonzero cross-correlations betw
them:

]

]t
h11

l

2
~“h1!25n“2h11 f 1 , ~38!

]

]t
h21

l

2
~“h2!25n“2h21 f 2 , ~39!

•••

]

]t
hm1

l

2
~“hm!25n“2hm1 f m , ~40!

with noise correlations given as in Sec. II:

^ f i~k,t ! f i~k8,t8!&5Dd~k1k8!d~v1v8!, ~41!

^ f i~k,t ! f j~k8,t8!&5D̃d~k1k8!d~v1v8!; iÞ j . ~42!

We define the relevant order parameter as

qm52
1

t E0

t

dtK )
i 51

m21

d~xi~t!2xm~t!!L . ~43!

We note that even though our definition of order paramete
actually different from the one defined in Ref.@7#, physically
it measures the same thing. Form52, the two definitions are
identical. It is evident that̂V1 , . . . ,Vm&}^ f 1 , . . . ,f m&.

A. Effective interactions between three polymers

Let us consider a situation where we have three polym
Due to the Gaussian statistics of the random poten
^h1(x1 ,t)h2(x2 ,t)h3(x3 ,t)& is zero at the bare level. How
ever, due to the nonlinearity in the equatio
^h1(x1 ,t)h2(x2 ,t)h3(x3 ,t)& is nonzero at the one-loop leve
In Fig. 4 we show the one-loop diagrams.
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The one-loop diagram in Fig. 4 scales as

;D̃3l3E ddq

n5q4 ;D̃3l3Ld24;gc
5/3Ld24, ~44!

whereL is the lower cutoff of the momentum integral. W
see that even though the bare noise is Gaussian the effe
noise has nonzero third cumulant~which arises due to the
nonlinear term in the KPZ equation!:

^ f 1~k1 ,t1! f 2~k2 ,t2! f 3~k3 ,t3!&

5D3d~k11k21k3!d~ t12t2!d~ t12t3!. ~45!

The naive dimension ofD3 is z22d23x and anomalous
dimension is 42d @see Eq.~44!#. Hence

f352~z22d23x142d!52~423d!53e ~46!

at d521e and @sincez521O(e2) and x5O(e2)# conse-
quently,

S35~x2f32z!/z5~23e22!/2 ~47!

at d521e. We notice thatS3,0, indicating that in the
thermodynamic limit i.e., when t→`, q3;tS3;uT
2Tcu2nS→0 asT→Tc2. Here,n is the correlation length
exponent.

B. Effective interactions between four polymers

Let us consider a situation when we have four polymers
the medium. We define the order parameter

q4[2
1

t E0

t

dt^d~x12x2!d~x12x3!d~x12x4!&. ~48!

Similar to our analysis of three polymers, we calcula
^ f 1(x1 ,t1) f 2(x2 ,t2) f 3(x3 ,t3) f 4(x4 ,t4)& in a one-loop pertur-
bation theory. The one-loop diagram is shown in Fig. 5. T
one-loop integrals scale as;(D̃4/n7)Ld26;e7/3Ld26;D4

and disappear ifD̃ vanishes. As in our previous analysis, th
can be interpreted as if the free energiesh1 , . . . ,h4 satisfy a
linear equation and the noises have four-point cro
correlations given by

FIG. 4. A diagram showing~a! one-loop contribution to

^h1h2h3&. The filled circles refer toD125D135D235D̃.
ive

n

e

-

^ f 1f 2f 3f 4&[D4d~x12x2!d~x12x3!d~x12x4!. ~49!

We calculateq4 from the relation

q452
1

t

dF~D4t2f4 /z!

D4
U

D450

;tS4. ~50!

We findf452(z23d24x162d)54e. Hence, we obtain
S45(24e22)/2, i.e.,q4;t (23e22)/2. Figure 5 shows a one
loop diagram contributing tô f 1f 2f 3f 4&, D125D235D34

5D145D̃.

C. Effective interactions betweenm polymers

It is easy to convince oneself that any higher point cor
lation of the random potential is nonzero. Notice that the
m-body effective interactions are built from the pairwis
cross-correlations. Since the two-chain effective interact
is attractive, thesem-chain interactions constructed out o
that are also attractive. Figure 6 is a typical diagram t
contributes atO(lm) ([one-loop! to ^V1 , . . . ,Vm& or to
^ f 1 , . . . ,f m&. A nonzero value of this ensures phase tran

FIG. 5. A schematic one-loop diagram contributing

^ f 1f 2f 3f 4&. D125D235D345D145D̃.

FIG. 6. Diagramatic contribution to, f 1 , f 2 , . . . ,f m. up to
one-loop order.
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tions involvingm polymers. The one-loop integrals scale
;Le1422m. We immediately obtain

fm52@z2~m21!d2mx12m242e#5me. ~51!

This leads to

qm;tSm, Sm5@2~m!e22#/2, ~52!

at d521e. Naturally, the effective free energy contains
the interaction terms that are generated due to disorder a
aging. Equivalently, the disorder mediates interactions
tween arbitrary numbers of polymers.

At d51, alongAX, fm521/22m/2,0 (m.2), hence
the effectivem-point coupling disappears in the large leng
scale limit. Thus there is nowm-body interaction in that
limit. However,f250, i.e., effective two-body attractive in
teraction is marginal, causing two polymers to attract.

IV. TRANSITIONS ALONG THE LINE YO

So far we focused on transitions atg;e, i.e., along the
line AX. But one could have followed a different path in th
(g-g̃! plane: In particular, if one follows the lineg50 then
the unstable fixed point (0,g̃* ) gives rise to transitions with
different exponents. Along this lineg* 50, henceindividual
polymers are free~i.e., randomness of the medium is irre
evant as far as their transverse fluctuations are concer
these fluctuations are still described byz52 andx5d/2 in d
dimensions!. However these free polymers still see attract
contact interactions in presence of one another that ca
these transitions. At dimensiond521e, g* 50, z52, and
x5d/2; hence, at this fixed point:

fm52@z2~m21!d2mx12m242e#5S 3

2
m21D e,

~53!

Sm5~x2fm2z!/z5F3

2
me22GY2. ~54!

Physically along this line polymers are individually free~de-
scribed by Gaussian polymer exponents!, no matter what the
value ofg̃ is. If the value ofg̃ is higher than a critical value
then Gaussian polymers attract each other due to contac
teractions induced by disorder between them.
s

l
er-
e-

ed;

e
se

in-

V. SUMMARY

In this paper, we have discussed how disorder gener
attractive interactions between two directed polymers in
disordered medium. We show that due to these attrac
interactions the polymers undergo a binding-unbinding tr
sition. We argue that in terms of the KPZ language this
due to the cross-correlations of noises in the two KPZ eq
tions satisfied by the respective free energies of the two p
mers. We present a detailed analyis of the phase diag
The strength of the cross correlation~i.e., the strength of the
effective attractive interaction! appears as a new parameter
the problem. This is relevant, in an RG sense, abov
threshold value in any space dimensiond. In d521e, we
get a new nontrivial unstable fixed point signaling a seco
order binding-unbinding transition. Atd521e, we get four
different phases, two of which are new arising due to
cross-correlation only. Similarly in 1d two phases appear
one of them is new. These effects can be realized by put
different kinds of polymers in the medium. Notice that if th
two DPs are identical theng5g̃ and there is no independen
variation ofg or g̃. In that case, the system is described
the lineg5g̃. It will be very interesting to examine this issu
of disorder-induced phase transitions of DPs by using
variational replica approach@15# or a replica Bethe ansat
approach@16#. In a typical replica calculation, then-replica
Hamiltonian Hn becomes a function of the replica-replic
interaction terms. In the present case, in a replica calculat
Hn will be the replica Hamiltonian for 2n DPs. It will in-
volve ‘‘cross-replica’’ interaction terms arising due to th
cross-correlation of the random potential. It will be intere
ing to see how the results obtained in this paper can be
tained in a replica approach.

Note added in proof. The problem of two identical poly-
mers with attractive interactions was solved for arbitrary
mensiond in Ref. @17#. The author wishes to thank M. La¨s-
sig for pointing this out.
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